Plant nutrition: root transporters on the move.

نویسندگان

  • Enric Zelazny
  • Grégory Vert
چکیده

Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salinity Effects on Potassium Accumulation and Transporters Expression in Grape (Vitis vinifera L.). Nayer Mohammadkhani1٭, Reza Heidari2 and Nasser Abbaspour2

Hydroponically grown ten grape genotypes (Vitis vinifera L.) were treated with different concentrations of NaCl. Chawga genotype accumulated K+ in its root and shoot even at high salinity. The correlation between Na+ and K+ concentrations in root and lamina of all genotypes was negative (P

متن کامل

Update on Nutrient Transporters Plant Nutrition: Root Transporters on the Move

Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to mainta...

متن کامل

Ubiquitination of transporters at the forefront of plant nutrition.

In plants, the tight regulation of plasma membrane transporters is essential to maintain nutrient homeostasis. The mechanisms controlling the abundance of transporters, and other integral plasma membrane proteins, now come to light. Ubiquitination appears as a major signal initiating cargo endocytosis and sorting into multivesicular bodies prior to degradation in the vacuole. We have indeed dem...

متن کامل

Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library ba...

متن کامل

Genomic inventory and transcriptional analysis of Medicago truncatula transporters.

Transporters move hydrophilic substrates across hydrophobic biological membranes and play key roles in plant nutrition, metabolism, and signaling and, consequently, in plant growth, development, and responses to the environment. To initiate and support systematic characterization of transporters in the model legume Medicago truncatula, we identified 3,830 transporters and classified 2,673 of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 166 2  شماره 

صفحات  -

تاریخ انتشار 2014